Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cells ; 11(19)2022 09 23.
Article in English | MEDLINE | ID: covidwho-2043599

ABSTRACT

Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins/metabolism , DNA, Mitochondrial , Viral Nonstructural Proteins/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Phosphoproteins/metabolism , SARS-CoV-2
2.
Genes & diseases ; 9(5):1258-1268, 2021.
Article in English | EuropePMC | ID: covidwho-1957698

ABSTRACT

Acute Lung Injury (ALI) and its severe form Acute Respiratory Distress Syndrome (ARDS) are the major cause of ICU death worldwide. ALI/ARDS is characterized by severe hypoxemia and inflammation that leads to poor lung compliance. Despite many advances in understanding and management, ALI/ARDS is still causing significant morbidity and mortality. Long non-coding RNA (lncRNA) is a fast-growing topic in lung inflammation and injury. lncRNA is a class of non-coding RNA having a length of more than 200 nucleotides. It has been a center of research for understanding the pathophysiology of various diseases in the past few years. Multiple studies have shown that lncRNAs are abundant in acute lung injury/injuries in mouse models and cell lines. By targeting these long non-coding RNAs, many investigators have demonstrated the alleviation of ALI in various mouse models. Therefore, lncRNAs show great promise as a therapeutic target in ALI. This review provides the current state of knowledge about the relationship between lncRNAs in various biological processes in acute lung injury and its use as a potential therapeutic target.

3.
Front Microbiol ; 11: 588409, 2020.
Article in English | MEDLINE | ID: covidwho-993385

ABSTRACT

Hyperactivation of the host immune system during infection by SARS-CoV-2 is the leading cause of death in COVID-19 patients. It is also evident that patients who develop mild/moderate symptoms and successfully recover display functional and well-regulated immune response. Whereas a delayed initial interferon response is associated with severe disease outcome and can be the tipping point towards immunopathological deterioration, often preceding death in COVID-19 patients. Further, adaptive immune response during COVID-19 is heterogeneous and poorly understood. At the same time, some studies suggest activated T and B cell response in severe and critically ill patients and the presence of SARS-CoV2-specific antibodies. Thus, understanding this problem and the underlying molecular pathways implicated in host immune function/dysfunction is imperative to devise effective therapeutic interventions. In this comprehensive review, we discuss the emerging immunopathological determinants and the mechanism of virus evasion by the host cell immune system. Using the knowledge gained from previous respiratory viruses and the emerging clinical and molecular findings on SARS-CoV-2, we have tried to provide a holistic understanding of the host innate and adaptive immune response that may determine disease outcome. Considering the critical role of the adaptive immune system during the viral clearance, we have presented the molecular insights of the plausible mechanisms involved in impaired T cell function/dysfunction during various stages of COVID-19.

4.
Gene ; 762: 145057, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-712916

ABSTRACT

COVID-19 is a lurking calamitous disease caused by an unusual virus, SARS-CoV-2, causing massive deaths worldwide. Nonetheless, explicit therapeutic drugs or clinically approved vaccines are not available for COVID-19. Thus, a comprehensive research is crucially needed to decode the pathogenic tools, plausible drug targets, committed to the development of efficient therapy. Host-pathogen interactions via host cellular components is an emerging field of research in this respect. miRNAs have been established as vital players in host-virus interactions. Moreover, viruses have the capability to manoeuvre the host miRNA networks according to their own obligations. Besides protein coding mRNAs, noncoding RNAs might also be targeted in infected cells and viruses can exploit the host miRNA network via ceRNA effect. We have predicted a ceRNA network involving one miRNA (miR-124-3p), one mRNA (Ddx58), one lncRNA (Gm26917) and two circRNAs (Ppp1r10, C330019G07RiK) in SARS-CoV infected cells. We have identified 4 DEGs-Isg15, Ddx58, Oasl1, Usp18 by analyzing a mRNA GEO dataset. There is no notable induction of IFNs and IFN-induced ACE2, significant receptor responsible for S-protein binding mediated viral entry. Pathway enrichment and GO analysis conceded the enrichment of pathways associated with interferon signalling and antiviral-mechanism by IFN-stimulated genes. Further, we have identified 3 noncoding RNAs, playing as potential ceRNAs to the genes associated with immune mechanisms. This integrative analysis has identified noncoding RNAs and their plausible targets, which could effectively enhance the understanding of molecular mechanisms associated with viral infection. However, validation of these targets is further corroborated to determine their therapeutic efficacy.


Subject(s)
Coronavirus Infections/genetics , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Pneumonia, Viral/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Animals , Betacoronavirus , COVID-19 , Humans , Mice , MicroRNAs/genetics , Pandemics , Protein Interaction Mapping , RNA, Messenger/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL